183 research outputs found

    Regional variation in the flexural properties of the equine hoof wall

    Get PDF
    The equine hoof wall is a hard, keratinous structure that transmits forces generated when the hoof connects the ground to the skeleton of the horse. During locomotion the hoof capsule is known to deform, resulting in an inward curvature of the dorsal wall and expansion of the heels. However, while researchers have studied the tensile and compressive properties, there is a lack of data on the flexural properties of the hoof wall in different locations around the hoof capsule. In this study, the flexural properties and hydration status of the hoof wall were investigated in two orthogonal directions, in different locations around the hoof capsule. The hoof was divided into three regions: the dorsal-most aspect (toe), the medial and lateral regions (quarters) and the heels caudally. Beams were cut both perpendicular (transverse) and parallel (longitudinal) to the orientation of the tubules. Differences in the mechanical properties were then investigated using three-point bending tests. There were considerable differences in the flexural properties around the hoof capsule; transverse beams from the heel were 45% more compliant than those from the toe region. This corresponded with changes in the hydration of the hoof wall; beams from the heel region were more hydrated (28.2 ± 0.60%) than those from the toe (24.2 ± 0.44%; P < 0.01). Regional variation in the water content is thought to help explain differences in the flexural properties. Mechanical data are further discussed in relation to variation in the structure and loading of the hoof wall

    High efficiency photon counting using stopped light

    Full text link
    Single-photon detection and photon counting play a central role in a large number of quantum communication and computation protocols. While the efficiency of state-of-the-art photo-detectors is well below the desired limits, quantum state measurements in trapped ions can be carried out with efficiencies approaching 100%. Here, we propose a method that can in principle achieve ideal photon counting, by combining the techniques of photonic quantum memory and ion-trap fluorescence detection: after mapping the quantum state of a propagating light pulse onto metastable collective excitations of a trapped cold atomic gas, it is possible to monitor the resonance fluorescence induced by an additional laser field that only couples to the metastable excited state. Even with a photon collection/detection efficiency as low as 10%, it is possible to achieve photon counting with efficiency approaching 100%.Comment: 4 page

    Ultra-Slow Light and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas

    Full text link
    We report the observation of small group velocities of order 90 meters per second, and large group delays of greater than 0.26 ms, in an optically dense hot rubidium gas (~360 K). Media of this kind yield strong nonlinear interactions between very weak optical fields, and very sharp spectral features. The result is in agreement with previous studies on nonlinear spectroscopy of dense coherent media

    Slow Light in Doppler Broadened Two level Systems

    Get PDF
    We show that the propagation of light in a Doppler broadened medium can be slowed down considerably eventhough such medium exhibits very flat dispersion. The slowing down is achieved by the application of a saturating counter propagating beam that produces a hole in the inhomogeneous line shape. In atomic vapors, we calculate group indices of the order of 10^3. The calculations include all coherence effects.Comment: 6 pages, 5 figure

    Studies of group velocity reduction and pulse regeneration with and without the adiabatic approximation

    Get PDF
    We present a detailed semiclassical study on the propagation of a pair of optical fields in resonant media with and without adiabatic approximation. In the case of near and on resonance excitation, we show detailed calculation, both analytically and numerically, on the extremely slowly propagating probe pulse and the subsequent regeneration of a pulse via a coupling laser. Further discussions on the adiabatic approximation provide many subtle understandings of the process including the effect on the band width of the regenerated optical field. Indeed, all features of the optical pulse regeneration and most of the intricate details of the process can be obtained with the present treatment without invoke a full field theoretical method. For very far off resonance excitation, we show that the analytical solution is nearly detuning independent, a surprising result that is vigorously tested and compared to numerical calculations with very good agreement.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    Spatial evolution of short pulses under coherent population trapping

    Full text link
    Spatial and temporal evolution is studied of two powerful short laser pulses having different wavelengths and interacting with a dense three-level Lambda-type optical medium under coherent population trapping. A general case of unequal oscillator strengths of the transitions is considered. Durations of the probe pulse and the coupling pulse T1,2T_{1,2} (T2>T1T_2>T_1) are assumed to be shorter than any of the relevant atomic relaxation times. We propose analytical and numerical solutions of a self-consistent set of coupled Schr\"{o}dinger equations and reduced wave equations in the adiabatic limit with the account of the first non-adiabatic correction. The adiabaticity criterion is also discussed with the account of the pulse propagation. The dynamics of propagation is found to be strongly dependent on the ratio of the transition oscillator strengths. It is shown that envelopes of the pulses slightly change throughout the medium length at the initial stage of propagation. This distance can be large compared to the one-photon resonant absorption length. Eventually, the probe pulse is completely reemitted into the coupling pulse during propagation. The effect of localization of the atomic coherence has been observed similar to the one predicted by Fleischhauer and Lukin (PRL, {\bf 84}, 5094 (2000).Comment: 16 pages revtex style, 7 EPS figures, accepted to Physical Review

    A Knob for Changing Light Propagation from Subluminal to Superluminal

    Get PDF
    We show how the application of a coupling field connecting the two lower metastable states of a lambda-system can produce a variety of new results on the propagation of a weak electromagnetic pulse. In principle the light propagation can be changed from subluminal to superluminal. The negative group index results from the regions of anomalous dispersion and gain in susceptibility.Comment: 6 pages,5 figures, typed in RevTeX, accepted in Phys. Rev.

    On Two Models of the Light Pulse Delay in a Saturable Absorber

    Full text link
    A comparative analysis of two approaches to description of the light modulation pulse delay in a saturable absorber is presented. According to the simplest model, the delay of the optical pulse is a result of distortion of its shape due to absorption self-modulation in the nonlinear medium. The second model of the effect, proposed at the beginning of our century, connects the pulse delay with the so-called "slow light" resulting from the group velocity reduction under conditions of the coherent population oscillations. It is shown that all the known experimental data on the light pulse delay in saturable absorbers can be comprehensively described in the framework of the simplest model of saturable absorber and do not require invoking the effect of coherent population oscillations with spectral hole-burning and anomalous modifications of the light group velocity. It is concluded that the effect of group velocity reduction under conditions of coherent population oscillations has not received so far any experimental confirmation, and the assertions about real observation of the "slow light" based on this mechanism are groundless.Comment: Regretfully, the journal version of the paper (in Optics and Spectroscopy) appeared to be strongly corrupted due to ignorant editing. In particular, "coherent population oscillations" (CPO) was replaced by "population coherent oscillations" (PCO), "bleaching" - by "clearing", and "bleachable absorber " - by "clearable absorber". Here we present original version of the pape

    Interference-induced gain in Autler-Townes doublet of a V-type atom in a cavity

    Full text link
    We study the Autler-Townes spectrum of a V-type atom coupled to a single-mode, frequency-tunable cavity field at finite termperature, with a pre-selected polarization in the bad cavity limit, and show that, when the mean number of thermal photons N1N\gg 1 and the excited sublevel splitting is very large (the same order as the cavity linewidth), the probe gain may occur at either sideband of the doublet, depending on the cavity frequency, due to the cavity-induced interference.Comment: Minor changes are mad

    Vacuum Squeezing in Atomic Media via Self-Rotation

    Full text link
    When linearly polarized light propagates through a medium in which elliptically polarized light would undergo self-rotation, squeezed vacuum can appear in the orthogonal polarization. A simple relationship between self-rotation and the degree of vacuum squeezing is developed. Taking into account absorption, we find the optimum conditions for squeezing in any medium that can produce self-rotation. We then find analytic expressions for the amount of vacuum squeezing produced by an atomic vapor when light is near-resonant with a transition between various low-angular-momentum states. Finally, we consider a gas of multi-level Rb atoms, and analyze squeezing for light tuned near the D-lines under realistic conditions.Comment: 10 pages, 6 figures; Submitted to PR
    corecore